Towards Bridging the Gap Between Scalability and Elasticity

Nicolas Ferry, Gunnar Brataas, Alessandro Rossini, Franck Chauvel, Arnor Solberg

SINTEF

CLOSER 2014 – Special session: Multi-Cloud
Introduction

Scalability as the ability to fulfill the SLAs against the changing workload

- Typically two independent activities:
 - Reasoning about long-term workload evolution (ScaleDL)
 - Handling short-term workload evolutions (CloudML)

- Model-driven self-management of multi-cloud systems scalability combining these two activities
Architecture

- Inspired by 3-layer architecture from self-adaptive systems

1. **Long-term layer**
 - Specify the architectural model and workload evolution profiles

2. **Mid-term layer**
 - Select the appropriate deployment model and usage evolution profile

3. **Short-term layer**
 - Monitor and manage the deployment of the running system
ScaleDL
(Long term layer)

• Main interaction point for designers

• ScaleDL leverages upon four sub-languages
 – Usage evolution profiles:
 • Define profile for the evolution of the workload of each service offered by the application
 – Work
 – Load
 – Quality metrics
 • Three forms: **stable, gradual changes and spikes**
Mid-term layer

• Bridge the gap between short and long-term layers

• Responsible for adapting the system on the basis of the workload predictions from long term layer proactively
Mid-term layer

Long-term layer

Usage evolution profiles

Architectural model

Updated workload

Mid-term layer

Usage evolution manager

Expected workload

Architecture selector

Deployment selector

Workload predictor

Deployment model

Updated workload

Expected workload

Usage evolution profiles

Usage evolution manager

Expected workload

Architecture selector

Deployment selector

Workload predictor

Deployment model

Updated workload

Expected workload

Current status of the system

Short-term layer
CloudMF
(Short-term layer)

• **Two main components:**
 – A *modelling environment* with a tool-supported domain-specific modelling language (DSML) to model the provisioning and deployment of multi-cloud systems
 – A *models@run-time environment* for enacting the provisioning, deployment and adaptation of these systems

• **Manage workload evolution within the free space defined by the upper layers**
Models@runtime

- Causally connected abstract representation of the system
Conclusion

• Approach for the self-management of the scalability concern of multi-cloud systems
• Based on a 3-layer architecture

• Future Work:
 – Finalize implementation
 – Collect past workload variations to improve accuracy of load predictions
Thank you!

Contact: nicolas.ferry@sintef.no